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Abstract—Artifacts can result when reconstructing a dynamic image se- take 45—60 sec to obtain one full tomographic acquisition. Be-
quence from inconsistent, as well as insufficient and truncated, cone beam cqyse the radiopharmaceutical distribution changes while the

SPECT projection data acquired by a slowly rotating gantry. The artifacts . ]
can lead to biases in kinetic model parameters estimated from time-activity SPECT gantry rotates, projections at different angles come from

curves generated by overlaying volumes of interest on the images. However, different tracer distributions. A dynamic image sequence recon-
the biases in time-activity curve estimates and subsequent kinetic parame- structed from the inconsistent projections acquired by a slowly

ter estimates can be reduced significantly by first modeling the spatial and : : : . - s
temporal distribution of the radiopharmaceutical throughout the projected rotating gantry can contain artifacts that lead to biases in ki

field of view, and then estimating the time-activity curves directly from the N€tiC parameters _eStimat_ed from time'aqtiVity curves generated
projections. This approach is potentially useful for clinical SPECT studies by overlaying regions of interest on the images. If cone beam
involving slowly rotating gantries, particularly those using a single-detector g|limators are used and the focal point of the collimators al-

system or body contouring orbits with a multi-detector system. ways remains in a particular image plane, additional artifacts
We have implemented computationally efficient methods for fully 4-D di- Yy p gep !

rect estimation of spatiotemporal distributions from dynamic SPECT pro- ~ Can arise in other image planes reconstructed using insufficient
jection data. Temporal B-splines providing various orders of temporal con-  projection samples [1]. If the projection samples truncate the

tinuity, as well as various time samplings, were used to model the time- h4tiant's hody, this can also result in additional image artifacts.
activity curves for segmented blood pool and tissue volumes in simulated

cone beam and parallel beam cardiac data acquisitions. Least squares es- 10 overcome these sources of bias in conventional i.mage. ba§ed
timates of time-activity curves were obtained quickly using a workstation. dynamic data analysis, we and others have been investigating
Given faithful spatial modeling, accurate curve estimates were obtained us- the estimation of time-activity curves and kinetic model param-

ing cubic, quadratic, or linear B-splines and a relatively rapid time sam- . . L .
pling during initial tracer uptake. From these curves, kinetic parameters eters dIrECtIy from dynamlc SPECT projection data by mOde“ng

were estimated accurately for noiseless data and with some bias for noisy the spatial and temporal distribution of the radiopharmaceutical
data. A preliminary study of spatial segmentation errors showed that spa- throughout the projected field of view [2].

tial model mismatch adversely affected quantitative accuracy but also re- - . . .
sulted in structured errors (projected model vs. raw data) which were easily BU|Id|ng on research by Carson [3] and by Formiconi [4] Into

detected in our simulations. This suggests iterative refinement of the spatial direct time-activity curve estimation for regions of interest, we
model to reduce structured errors as an area of future research. have used simulated data to show that unbiased kinetic param-
|nde>_< Ter_ms—Dynamic SPECT, fully 4-D reconstruction, kinetic param-  eter estimates for one-compartment models can be obtained di-
eter estimation. rectly from parallel beam and cone beam SPECT projections,
given the blood input function and the proper segmentation of
I. INTRODUCTION volumes encompassing the projected field of view [5-7]. These

e:‘;imulations systematically incorporated physical effects such as

HE estimation of time-activity curves and kinetic mod ;
I y g_ttenuatmn (Table 1), and led to the development of methods

parameters directly from projection data is potentially us hich dt | dvnarffe Te-teb .
ful for clinical dynamic single photon emission computed ta. I(t: twgre;seF otk?nayf_e 5; tyrlia i l(J:I edo.rOXITfe patf
mography (SPECT) studies, particularly in those clinics whit.IHan stu y [8] or this patient study, the blood nput function
s estimated directly from the projections and spatial models

have only single-detector systems and thus are not able to g@_th left ventricul di blood Lli d back
form rapid tomographic acquisitions. Even with a three-detec gy the lett ventricular myocardium, biood pool, fIVer, and back-
ound tissue were determined by automatically segmenting a

system, a patient study that utilizes body contouring orbits cgﬁ ) L )
ynamic volumetric image sequence reconstructed from the in-
This work was supported by the National Heart, Lung, and Blood Institute 60NSistent projection data.

the US Department of Health and Human Services under grants RO1-HL5066 i ini i
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and Environmental Research, Medical Sciences Division of the US DepartmeRi@tial boundaries for myocardial regions of interest and ki-
of Energy under contract DE-AC03-76SF00098. This work was developediietic parameters for one-compartment models from simulated

part using the resources at the US Department of Energy National Energy Rgsnla_cli ; ; icqi _
search Scientific Computing (NERSC) Centksterisk indicates corresponding §thle slice transaxial positron emission tomography (PET) pro

author. jections, using a blood input function that was estimated from
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ing, Lawrence Berkeley National Laboratory, University of California, One Cyx;
clotron Road #55-121, Berkeley, CA 94720 USA (e-mail: bwreutter@lbl.gov)glons and volumes, a number of researchers have reconstructed
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TABLE |
SUMMARY OF PROJECTION GEOMETRIESPHYSICAL MODELING, AND COMPUTATIONAL COMPLEXITY FOR OUR PREVIOUS WORK5—8] AND THIS WORK.
THE ABBREVIATIONS FOR THE GEOMETRIES ARESSP,SINGLE-SLICE PARALLEL BEAM; MSP,MULTI-SLICE PARALLEL BEAM; AND C, CONE BEAM. IN
SECTION || OF THIS WORK, THE NUMBER OF PROJECTION SAMPLES IS DENOTED BY THE PRODUCT OF FACTORS/ K, AND THE NUMBER OF LINEAR
PARAMETERS IS DENOTED BY THE PRODUCT OF FACTORSV/ N.

previous work this work
[5] [6] [7] (8]
projection geometry SSP C/MSP  SSP MSH CIMSP
input function known yes yes yes no no
liver in field of view no no yes yes yes
attenuation correction no no yes yes yes
point response modeling no no no no yes
scatter modeling no no no no no
projection samplesx{106) 0.072 17 0.12 7.6 IJK =3.7
linear parameters 9 9 9 8 MN = 96
elements in system matrR (x10%) | 0.65 16 1.0 61 IJKMN = 350
multiply-and-adds foF TF (x106) | 3.2 78 52 270 | 1K MNQINED _ 47 900

In our previous work, we formulated a nonlinear estimatioB-splines [17] are used to model the time-activity curves for
problem in which a set of linear parameters was estimated tise blood input, three myocardial volumes of interest, liver,
ing least squares, given iteratively estimated values for the namd background tissue in simulated data. Attenuation and ge-
linear washout parameters for one-compartment kinetic magmetric point response are modeled, but scatter is not. Seg-
els [5-7]. As discussed in Section Il and summarized in Terented volumes encompassing the projected field of view are
ble I, the computational resources required for the straightfanodeled to contain spatially uniform activity concentrations. In
ward solution of the embedded linear least squares subprobl8ettion 111-B, a Monte Carlo simulation is used to study the
grow linearly with the number of SPECT projection measureffects of noisy projections on kinetic parameter estimates for
ments, and are nontrivial by today’s standards for typical patiesrte-compartment models obtained from the spline time-activity
datasets. In particular, the memory required to analyze a dywves for the blood input function and the myocardial and liver
namic %™ Tc-teboroxime patient study necessitated the usewadlumes. This “semi-direct” approach, in which compartmental
a Cray J90 at the National Energy Research Scientific Compntedeling is done subsequent to direct time-activity curve esti-
ing (NERSC) Center [8]. To make matters worse, the compmation, complements our earlier work, in which compartmen-
tational requirements for the straightforward solution increats model parameters were estimated directly from projection
quadratically with the number of linear parameters. Thus,data [5-8]. In Section IlI-C, the effects of failing to segment
more computationally efficient solution is needed to performyocardial defects and inaccurately localizing the myocardial
more detailed spatiotemporal modeling and to develop furth&alls are studied with simulated data.
our direct kinetic parameter estimation methods, using currentlyThe methodology presented in Section Il builds on the work
available computers. of Chenet al[18], in which a spline fit to the blood input func-

In this work the primary new development, which we retion and kinetic parameters for a compartmental model were
port in Section Il, is a computationally efficient method whicliPintly estimated from time-activity curves generated by over-
extends Formiconi's least squares algorithm [4] so that fullgying regions of interest on a simulated temporal sequence of
four-dimensional (4-D) direct spatiotemporal distribution estreconstructed PET images. Nichasal [19] have also used
mation from projections can be performed qu|Ck|y on a Wor@plines to model the time course of aCtiVity in volume elements
station with a modest amount of memory. This method is usé¢xels) reconstructed from dynamic list mode PET data.
with simulated data in Section Il to reconstruct time-activity
curves for segmented volumes encompassing the projected field !l COMPUTATIONALLY EFFICIENT ESTIMATION OF
of view. This method can be applied to projection data acquired =~ SPATIOTEMPORAL DISTRIBUTIONS DIRECTLY FROM
using any collimator or orbit geometry, provided that the data PROJECTIONS

yield a preliminary image reconstruction which can be used toTime varying activity concentrations within volumes of in-
segment the activity distribution within the projected field oferest encompassing the projected field of view can be mod-
view. eled by selecting a set of temporal basis functions capable of
The secondary result, which we report in Section lll, is Bepresenting typical time variations and having desired smooth-
preliminary study of the biases that result from modeling vaness properties. For example, to fit the blood input function
ious orders of temporal continuity and using various time sar@henet al [18] used five piecewise polynomial spline func-
plings when estimating time-activity curves directly from dytions defined over four contiguous time segments. The segments
namic cone beam and parallel beam SPECT projection dateere determined by varying their endpoints in a prescribed fash-
The effects of spatial segmentation errors are also studied.idn and using the set which yielded the smallest weighted sum
Section Ill-A, piecewise cubic, quadratic, linear, and constaot squared errors, averaged over 100 simulated data sets. To



IEEE TRANSACTIONS ON MEDICAL IMAGINGX(5):434-450, 2000 (PREPRINT) 3

model the time course of activity in voxels reconstructed froand
dynamic list mode PET data, Nichads al [19] first calculated
the temporal histogram for the all of the data. Then, segment

endpoints for cubic B-splines were defined by selecting a $gkpectively, where is anZ.J K element column vector whose
which yielded approximately equal arc lengths along the res Zt-Jr (j — 1)I + (k — 1)IJ]™ element isp; ., F is anIJK x
IR

ing time-activity curve. In the simulations in Section IIl, we us N matrix whose{[i + (j — 1)I + (k — 1)I.J],[m + (n —

16 B-splines spanning 15 time segments having geometrica| M element isu™,, ais anM N element column vector
increasing length. The order of the splines and the length of t LN

_ th H S
initial time segment are varied in a prescribed fashion and the ose[m + (n UM]. element Stmn, P 1S anI{r{K e'eme’.‘t
errors in the time-activity curve estimates and the subsequgﬁl[umn vect_or whosé + (5 — 1.)1 + (k- 1).U] element is
andW is anl/ JK x I.JK diagonal matrix whosg + (j —

kinetic model parameter estimates are compared. Piji: th 4 . L
Similarly, the spatially nonuniform activity concentration ) + (k — 1)I.J]"" diagonal element i$/V;;.. The criterion,

within a particular volume can be modeled by selecting an ap-’ is_ minimized by the vector of spatiotemporal basis function
propriate set of spatial basis functions defined within the vdioefficients

ume. For example, to analyz&%* Tc-teboroxime patient study, a— (F"WF) 'FTWp*. )

we used indicator functions for the left ventricular myocardium,

blood pooal, liver, and background tissue [8]. These were detd@ihe covariance matrix for the coefficieritss

mined automatically by applying a 4-D edge detection operator
to the dynamic image sequence reconstructed from the incor©

_sist_ent projecti_on data. In the simulations in Section Ill, we USthere coyp*) is the covariance matrix for the measured projec-
indicator functions for the known anatomy of a mathematicgl, - Gijven an estimate of cav*), estimates of the statistical
phg’.“"m- ¢ | basis f . d ¢ il uncertainties of the coefficienfsare the square roots of the di-
_Glven a set of temporal basis functions and sets of spatia Jonal elements of the covariance matrix given by equation (6).
sis functions for the volumes, coefficients for the resulting spg; general, the errors in the coefficients are correlated and the

tiotemporal basis functions can be estimated directly from t'&Svariance matrix given by equation (6) has nonzero elements
projections using the following generalization of Formiconi’%ﬁ the diagonal

algorithm, which was developed for temporally static distribu- Storing the entire matri and calculating the symmetric

tionf] 4. f thent" ial basis function al _ matrix FTWEF using straightforward matrix multiplication is
TI e.pro:jectlon(;)bt eﬂ? S%at'r? 0asIs ulantIC::’l 3‘10”9 rayatl computationally inefficient. For example, about 3.7 million pro-
angle; is denoted byu;;, and the integral of the'™™ tempora jection samples result from a 15 minute dynamic SPECT study

basis function during the time interval associated with ar_;gleSuch as that simulated in Section IlI-A, in which data are ac-

of rotationk is denoted by, . The projection equations can bequired for 64 transverse 32 axial rays per anglel (= 2048),
expressed as J = 120 angles per rotation, and one rotation per minute
M N (K = 15) (Table I). Fully 4-D direct spatiotemporal distribution
Dijk = Z Z T (1) estimation using 96 basis func_tlons cqmposed fidm= 6 spa- _
tial and N = 16 temporal basis functions, such as are used in
o . the simulations described in Section IlI-A, involves a maffix
where thep; ;. are the modeled projections, thg,, are the lin- containingl. 7 K AN ~ 350 million elements (Table 1). For an
ear coefficients associated with the time integrals of the projgg;eighted least squares reconstruction of the spatiotemporal
tions of the spatiotemporal basis functions,is the number of 55 function coefficients(i.e., for W an identity matrix), cal-
spatial basis functions, anlf is the number of temporal ba-¢jating the symmetric matri€TF using straightforward ma-
sis functions. The criterion which is minimized by varying they multiplication required JK M N (MN +1)/2 ~ 17 billion
linear coefficients,,, associated with the time integrals of th%ultiply—and-add operations, given (Table 1). This computa-
projections of the spatiotemporal basis functions is the weightggha| burden is nontrivial for current workstation-class comput-

x* = (p* — Fa)"W(p* — Fa), (4)

v(a) = (FTWF) 'F"Wcov(p*)WF(FTWF)~!, (6)

m=1n=1

sum of squares function ers and grows worse quickly as either the numbepf spatial
I (p? )2 basis functions or the numbg¥ of temporal basis functions in-
9 Diji — Pijk creases
ZZ Z Wijk The burden of storing the matrik can be reduced signifi-

i=1 j=1 k=1
! cantly by storing instead the spatial basis projection facigs

where thep;;, are the measured projections, thig;. are and the temporal basis integral factety and calculating the
weighting factors/ is the number of projection rays per angleglements ofF* as needed. FofJM > JKN, this reduces
J is the number of angles per rotation, alidis the number of memory usage by a factor of abo&fN. For the example
rotations. Typically, the weighting factors are either unity for aabove with{I, J, K, M, N} = {2048,120, 15,6, 16}, this re-
unweighted fit or the estimated variances of the projections fquires storage of only JM =~ 1.5 million v} factors and
a weighted fit. JKN =~ 29 thousandv}}, factors and reduces memory usage
Equations (1) and (2) can be rewritten in matrix formas by a factor of about 230.
For an unweighted least squares reconstruction of the spa-
p =Fa (3) tiotemporal basis function coefficienig(i.e., for W an identity
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matrix), the symmetrid/ N x M N matrix FTF can be cal- Inverting the symmetrid/ N x M N matrix FTF is straightfor-
culated more efficiently as follows. Denoting then + (n — ward, given its Cholesky decomposition. Taking the measured
L)M], [m' + (n/ — 1)M]}*" element ofFTF by ¢mmm'n’ one projections to be independent Poisson random variables, an es-

has timateP of their covariance matrix is the/ K x IJK diagonal
I K matrix having the estimated projection vecfm: Fa along the
ro i i th
prmnm'n’ Z Z ZUZ? ;Lku;? ng ) diagonal. Denoting th§[m-+(n—1)M], [m/ 4T-( 1) m]jm SI
it ement of the symmetri&/ N x M N matrixF " PF by
one has

Rearranging the summations yields

I J K
mnm n’ m
K Z Z Z Ui U Dijh iy UJk (10)
¢mnm/n' _ n ,n' =1 j=1 k=1
- u” w VikVjk

j=1 Li=1 k=1 ®) wherep; ;. is the[i + (j — 1)1 + (k — 1)1.J]™ element of the es-
J timated projection vectgb. Rearranging the summations yields
= Z H;
j=1

J K [ 1
mnmln/ — m a m/ n 77/
(0 = § § E U Piki; | ViRUs

where the factorsp}’””' and ™" denote the inner products J=1k=1Li=1 (11)
I K / . J K

D et Ui uls andzk/:1 y.;lkv‘;bk., respectively. _ Z Z wﬂm'v?kv;?,;,
The number of.*™ factorsis/M (M +1)/2, the number of k=1

Vi factors isJN (N + 1)/2, and the number of™"™™" fac-
torsisM N(M N +1)/2. It takesI multiply-and-add operations N ,
to calculate eaclpcmm’ factor andK multiply-and-add opera— D=1 U Dighuy - ,

tions to calculate each”™ factor. Given theu” andyr®  1he number ou;;;m factors isJKM(M + 1)/2 and the

factors, it takes/ multiply-and-adds to calculate each of th@umber ofy™"™ ™" factors isMN(MN + 1)/2. Given the
¢™m' ' factors. Thus, the™™™ " can be calculated using justpijx, it takes 21 multiply operations and/ add operations
JIM(M+1)+KN(N+1)+MN(MN+1)]/2 multiply-and- to calculate eacmmm factor. Given thewy}cm factors, it
adds. Fod > N2 andK < M?, this reduces the number ofoptakeSQJK muIt|pI|es andJK adds to calculate each of the
erations by a factor of about N2. For the example above withy™"™'"" factors. Thus, the/™"™'"" can be calculated using
{I,J,K,M,N} = {2048,120, 15,6, 16}, this computationally justJK[IM (M + 1)+ M N(M N+1)] multiply operations and
efficient calculation off TF requires storage of about 19 thouhalf that number of add operations. Compared to the computa-
sandu;”m' and u}-m’ factors and about 6 million multiply-and- tionally efficient calculation oF TF, this calculation of TPF
add operations, which is a factor of about 2800 less than thatuires abou2 K times more multiply-and-adds and abadxit
required for straightforward matrix multiplication. For the simutimes more memory, giveR. For the case wherP is the di-
lations described in Section IlI-A, this computationally efficierdgonal matrix having the estimated projection vegice Fa
calculation took about 2.2 sec on a 194 MHz MIPS R1000&ong the diagonalP can be calculated using/ K M (N + 1)
based Silicon Graphics workstation. multiply-and-add operations, which is abdW + 1) /(M + 1)

Having addressed the major issues of stofihgnd calculat- times more multiply-and-adds than needed to calcUiteF.
ing F'F, the next computational hurdle is calculatifg p*. Thus, given the calculation time f&”F of about 2.2 sec on
This can be done in a relatively straightforward manner usieg194 MHz MIPS R10000-based Silicon Graphics workstation
(I+ 1)JK M N multiply-and-add operations, given thg and and K = 15 rotations, such as for the simulations described in

n_factors. The system of equatioRS Fa = FTp* can then Section Ill-A, calculation ofFTPF should take about 1 min,
be solved efficiently for the spatiotemporal basis function coafiven P. For M = 6 spatial basis functions andl = 16 tem-
ficientsa using the Cholesky decompositionBf F [20]. poral basis functions, calculation Bf should take about 3 min.

An estimate of the covariance matrix for the unweighted leastFor a weighted least squares reconstruction of the spatiotem-
squares estimates(equation (6)) can be calculated in the folporal basis function coefficients (i.e., for W= = cov(p*)
lowing computationally efficient manner. From this covarianda equations (5) and (6)), caIcuIatiri@TWF takes the same
matrix, the covariance between integrated segments of the splngount of computation as calculatif®’ PF. Thus, for dy-
models for the time-activity curves for the blood input functionamic SPECT projection data acquired with a relatively small
and a tissue uptake function can be estimated, which mayrhanber of rotationsk, it appears that with these methods a
useful for obtaining more accurate compartmental parameter eerkstation with a modest amount of memory can be used
timates via a weighted least squares fit [21]. In Section IlI-Bo perform a weighted least squares reconstruction of the spa-
however, an unweighted least squares fit is performed. tiotemporal basis function coefficierds as well as to obtain an

Given an estimat® of the covariance matrix for the mea-estimate of the covariance matrix for the coefficients, in a rea-
sured projections and substituting the identity matrixWgrin  sonable amount of time. These methods are easily parallelized,
equation (6), one obtains and additional savings in computation can be realized by tak-

. . LT T ing advantage of the sparsity of nonzero spatial basis projection
cov(a) = (F'F)" ' F PF(F F)"". (9) factorsu;; and nonzero temporal basis integral factals

where the factorw;’,;m' denotes the weighted inner product



IEEE TRANSACTIONS ON MEDICAL IMAGINGX(5):434-450, 2000 (PREPRINT) 5

m
le

Q" (1)

Fig. 1. Compartmental model f8P™ Tc-teboroxime in the myocardiuni(t)
is the blood input function™ (t) is the tracer in tissue volume, andk?}
andk?} are the rate constants for uptake and washout, respectively.

IIl. COMPUTERSIMULATIONS

The Mathematical Cardiac Torso (MCAT) phantom [22], de-
veloped by the University of North Carolina Medical Imaging
Research Laboratory, was used in simulations to evaluate the (@) MCAT emission phantom.
ability to estimate spatiotemporal distributions directly from dy-
namic cone beam and parallel beam SPECT projections usin
unweighted least squares. In addition, kinetic parameters fo
one-compartment models (Figure 1) were estimated from th
resulting spatiotemporal distributions, and a preliminary study
of the effects of spatial segmentation errors was performed
The MCAT emission phantom (Figure 2a) was composed of
128 contiguous 1.75 mme-thick slices and contained three my
ocardial volumes of interest (normal myocardium, septal defect
and lateral defect), blood pool, liver, and background tissue,
These six volumes did not overlap. The myocardial defects werd
defined as the intersection of 3 cm diameter spheres with th{
septal and lateral walls of the left ventricle. Cone beam and par
allel beam projections were attenuated using the correspondin
MCAT attenuation phantom (Figure 2b). Single-slice versions
of these phantoms were used in our previous work [7].

The simulated time-activity curves for the six emission vol-
umes are shown in Figure 3. These are the same curves that Wigk@. Transverse cross sections through (a) the MCAT emission phantom and
used for the single-slice simulation in our previous work [7]. gﬁét:se“gfcgzgté?a‘r‘ﬁté%ﬂl&Z?gﬁg?; dzglecttgé”lﬁa(g‘;” of data resulting from
The time-activity curves for the three myocardial volumes of
interest and the liver were generated by using the blood pool
curve as the input to one-compartment models having kinetics
corresponding to those of teboroxime [23-25]. The background 180

(b) MCAT attenuation phantom.

tissue activity was proportional to the blood pool activity. fver
The simulated 15 minute data acquisition consisted of 160 r

64 transverse 32 axial rays per angld (= 2048), J = 120 an- 140

gles per rotation, and one rotation per minuié & 15) of a 120 |

single-detector system. The projection bins were 7 miihmm g bloo

at the detector for both the cone beam and parallel beam georige- 100
tries, and the detector was 30 cm from the center of the field af

view. The collimators had a hole diameter of 2 mm, a length 0?; normal myocardium
4 cm, and were offset 1 cm from the detector. The cone beam 60
collimators had a focal length of 70 cm, which resulted in trun- 0 lateral defect

cation of the data (Figure 2a). The parallel beam data were not

truncated. Attenuation and geometric point response were mod- 20
eled using a ray-driven projector with line length weighting [26]. o backgraund i
Scatter was not modeled. 3 6 9 12 15

septal defect

A. Spatiotemporal Distribution Estimates time (min)

The spatial basis projection factoug; were defined by for-  Fig. 3. Simulated time-activity curves for the volumes shown in Figure 2a.
ward projecting each of the six known emission volumes com-
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n=13
0.75 i1
i n=13 B

0.5

0.25 1 ‘ 1
0 P L v. L. 1
15 12 15
time (min) time (min)
(a) Cubic B-spline basis functions. (b) Quadratic B-spline basis functions.
1.0
0.75
0.5
0.25
0
time (min) time (min)
(c) Linear B-spline basis functions. (d) Constant B-spline basis functions.

Fig. 4. Examples of piecewise cubic (a), quadratic (b), linear (c), and constant (d) B-spline basis functions used to model time-activity tegvesplBies were
used to span 15 time segments having geometrically increasing length. The thirteenth spline is shown as a solid curve. The initial time segioetitdength
splines shown here is 10 sec.

posing the MCAT phantom (Figure 2a). Each emission valierivative, respectively.

ume was modeled to contain spatia!ly l_Jnif_orm activity_ (i.e., ea_ch The computational benefits of factoring the maffinto the
volume was represented by a spatial indicator function), whigQatia| basis projection factotg”? and the temporal basis inte-
yieldedM = 6 sets of spatial basis projection factors. gral factors”, were evidentin the simulation. Rather than stor-
ing its more than 350 million elements, about 1.5 milliaf}

tegratingN' — 16 splines spanning 15 time segments havir ndvjk factors were stored instead. The number of mulnply-
geometrically increasing length (Figure 4). Piecewise cubighd-adds used to calculdié'F was reduced from over 17 bil-

quadratic, linear, and constant B-splines were used with if|e" {0 1ess than 6 million. A set of time-activity curves was es-
tial time segment lengths ranging between 2.5-60 sec (Table fifjated directly from the 3.7 million simulated projection sam-
The shorter initial time segment lengths provided a higher dgf€s in @bout 2.3 min on a 194 MHz MIPS R10000-based Silicon
sity of temporal spline basis functions at the beginning of ttfaraphics workstation. The calculationsif F andF " p* took
simulated acquisition, when the activity concentrations wef®0Ut 2.2 sec and 2.2 min, respectively.

changing most rapidly (Figure 3). The 60 sec initial time seg- Figures 5 and 6 depict the root mean square (RMS) differ-
ment length provided basis functions spaced uniformly in timences between the simulated time-activity curves and the spline
The cubic, quadratic, and linear B-splines allow modeling alrves estimated directly from noiseless projections, normalized
curves that are continuous through their second, first, and zeroyithe RMS values of the simulated curves and expressed as per-

The temporal basis integral factos$, were defined by in-
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TABLE I
TEMPORAL SAMPLINGS USED IN THE SIMULATIONS INSECTION I1I-A. GIVEN AN INITIAL TIME SEGMENT LENGTH, A SCALING FACTOR WAS
CALCULATED AND USED TO GENERATE A SEQUENCE OA5 TIME SEGMENTS HAVING GEOMETRICALLY INCREASING LENGTH AND SPANNING A TOTAL OF

15MIN.
initial segment
time scaling subsequent time segments (sec)
segment| factor
(sec) 2 3 4 5 6 7 8 9 10 11 12 13 14 15
25 1.39 35 48 67 94 13 18 25 35 49 68 95 130 180 250
5.0 1.31 65 86 11 15 19 25 33 43 56 74 96 130 170 2P0
10 1.23 12 15 18 23 28 34 42 51 63 77 95 120 140 1f0
20 1.14 23 26 30 34 39 45 51 58 67 76 87 100 110 180
40 1.06 42 45 47 50 52 55 58 62 65 69 72 77 81 85
60 1.00 60 60 60 60 60 60 60 60 60 60 60 60 60 60
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(a) Cubic B-spline modeling errors. (b) Quadratic B-spline modeling errors.
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(d) Constant B-spline modeling errors.

Fig. 5. Normalized RMS modeling errors for time-activity curves estimated directly from noiseless cone beam projections, using piecewisejaatiata)(b),
linear (c), and constant (d) B-spline basis functions (e.g., Figure 4) and initial time segment lengths ranging between 2.5-60 sec (Table I1).
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Fig. 6. Same quantities as in Figure 5, for parallel beam projections.

centages. The temporal spline modeling errors were largestifatial sampling provided by using initial time segment lengths
the septal and lateral defects, which had relatively small spatidil2.5, 5, or 10 sec, the errors for all six volumes ranged be-
supports (Figure 2a) and low activity concentrations (Figure 3)veen 0.020-3.8%, 0.022-1.7%, 0.090-6.2%, and 1.6—64% for
Intermediate errors resulted for the blood pool and backgrouride cubic, quadratic, linear, and constant B-splines, respectively
which had larger spatial supports but quickly decaying activiffFigure 5). The corresponding ranges of errors for the paral-
concentrations. The errors were smallest for the normal nigi beam geometry were 0.020—4.9%, 0.022—2.7%, 0.089—6.8%,
ocardium and liver, which had larger spatial supports and highd 1.6-62% (Figure 6). For the cone beam geometry and the
activity concentrations throughout the simulated data acquisihiform time sampling provided by using an initial time seg-
tion. The errors tended to increase as the length of the initrakent length of 60 sec, the errors ranged between 0.45-50%,
time segment for the splines increased. 0.48-53%, 0.65-60%, and 4.0-110% for the cubic, quadratic,
In most cases the temporal spline modeling errors for tfigear, and constant B-splines, respectively. The corresponding

three myocardial volumes of interest and the blood pool wef@ges of errors for the parallel beam geometry were 0.37-69%,
smaller for the cone beam geometry than for the parallel be&rfl—73%, 0.58-83%, and 4.0-140%.

geometry, due to the increased relative sensitivity to those vgl- Kinetic Parameter Estimates
umes provided by the cone beam sampling. Errors for the back-

ground tissue were comparable for both geometries, while inOf interest is how the temporal spline modeling errors bias the
most cases the errors for the liver were larger for the cone beastimates of kinetic parameters obtained from the directly esti-
geometry. For the cone beam geometry and the relatively rapidted time-activity curves. To study this we used the program
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TABLE IlI
KINETIC PARAMETERS OBTAINED FROM TIMEACTIVITY CURVES ESTIMATED DIRECTLY FROM NOISELESS CONE BEAM PROJECTIONS USINB-SPLINES
OF VARIOUS ORDER AND VARIOUS INITIAL TIME SEGMENT LENGTHS UNITS FOR UPTAKEKL? AND WASHOUT k73 ARE MIN™!. VALUES FOR THE
DIMENSIONLESS VASCULAR FRACTIONf!™ AND THE BACKGROUND AMPLITUDE g ARE NOT SHOWN VALUES WHICH DIFFERED FROM THE SIMULATED
VALUE BY >10%ARE SHOWN IN BOLDFACE TYPE

cone beam
noiseless fit
simulated initial time segment length (sec)
2.5 5 10 20 40 60

normal ki, 0.700 0.700 0.700 0.701 0.700 0.683 0.709
myocardium k1, 0.150 0.150 0.150 0.150 0.150 0.149 0.155
septal k2, 0.300 0.301 0.301 0.300 0.286 0.181 0.358

cubic defect k%, 0.300 0.301 0.301 0.300  0.288 0.207  0.334
B-splines lateral k3, 0.500 0.498 0.496 0.522  0.441 1.17 2.54
defect k3, 0.600 0.599 0.598 0.616  0.565 0.942 1.75

liver k3, 0.900 0.900 0.900 0.900  0.904 0.879 0.878

ki, 0.0020 | 0.0020 0.0020 0.0020 0.0021 0.0016 0.0017

normal ki, 0.700 0.701 0.701 0.700 0.700 0.684 0.708
myocardium  k}, 0.150 0.150 0.150 0.150 0.150 0.149 0.155

septal k2, 0.300 0.303 0.302 0.300 0.297 0.183 0.350
quadratic defect k2, 0.300 0.302 0.301  0.300 0.296 0.211 0.326
B-splines lateral k3, 0.500 0.502 0.499 0.502 0.444 1.19 2.89

defect k3, 0.600 0.602 0.598  0.603  0.561 0.957 1.87

liver k3, 0.900 0.900 0.900 0.900 0.901  0.879 0.871

ki, 0.0020 0.0020 0.0020 0.0020 0.0020 0.0016 0.0017

normal ki, 0.700 0.703 0.700 0.702 0.698 0.687 0.708
myocardium ki, 0.150 0.150 0.150 0.150  0.150 0.149 0.155
septal k2, 0.300 0.295 0.292  0.308 0.301 0.170  0.335

linear defect k2, 0.300 0.297 0.296 0.305  0.302 0.204 0.315
B-splines lateral k3, 0.500 0.533 0.498 0.491 0.533 1.22 1.90
defect k3, 0.600 0.602 0.578 0.585  0.626 0.990 1.32
liver k3, 0.900 0.903 0.900 0.902  0.895 0.888 0.864

ki, 0.0020 | 0.0020 0.0020 0.0020 0.00200.0018 0.0014

normal ki, 0.700 0.688 0.685 0.681 0.682 0.717 0.641
myocardium k1, 0.150 0.146 0.147 0.147 0.148 0.154 0.149

septal k2, 0.300 0.317 0.275 0.265  0.379  0.252  0.082
constant defect k2, 0.300 0.341 0.299 0.294  0.322 0.254 0.125
B-splines lateral k3, 0.500 0533 0.734  0.665  0.331 1.98 4.23

defect k3, 0.600 0.635 0.833 0.660 0553  1.36 2.09

liver k3, 0.900 0.911 0.903 0.892  0.885 0.901 0.851

ki, 0.0020 | 0.0027 0.0026 0.0020 0.0021 0.0029 0.0022

RFIT [27-29] to fit one-compartment kinetic models to the divheref,™ is the fraction of vasculature in the tissue. To fit one-
rectly estimated time-activity curves for the three myocardiabmpartment models for the normal myocardium, septal defect,
volumes of interest and the liver, using the directly estimatéateral defect, and liver (denoted by indices= 1, 2, 3, and
blood pool curve as the input function. The background tissderespectively), RFIT varies the parametefs, k7%, and ;" to
activity was modeled to be proportional to the blood pool activainimize the unweighted sum of squares function
ity, and its amplitude was also estimated. .
For the one-compartment kinetic model (Figure 1), the uptake - ) "
in tissue volumen is Xm = Z Z Z Amn Vs
' ki (t—T) (14)
mt) =k | B(r)e M Tdr = kRV™(), (12 tik R R
@) =3 [ Bl PRV, (12) [ b o
t
where B(t) is the blood input functionk?; is the uptake pa- . _ . .
rameter, and:7 is the washout parameter. Total activity in thavhere thea,,,, are given by equation (5)y}; is the inte-
tissue is given by gral of then™ temporal basis function during the time interval
[tk — At, t;5] in which projection data are acquired at angt
QM)+ [ B(t) = ki V™(t) + £ B(b), (13)  rotationk, V™ (r) is the convolutionf B(r')e=*iz(=dz’,
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TABLE IV
SAME QUANTITIES AS IN TABLE Ill, FOR PARALLEL BEAM PROJECTIONS VALUES WHICH DIFFERED FROM THE SIMULATED VALUE BY >10%ARE
SHOWN IN BOLDFACE TYPE

parallel beam

noiseless fit
simulated initial time segment length (sec)
2.5 5 10 20 40 60

normal ki, 0.700 0.700 0.700 0.701 0.701 0.677 0.718
myocardium k1, 0.150 0.150 0.150 0.150 0.149 0.148 0.158
septal k2, 0.300 0.301 0.301 0.300 0.286 0.162 0.357

cubic defect k%, 0.300 0.301 0.301 0.301  0.287 0.192  0.333
B-splines lateral k3, 0.500 0.499 0.494 0.527  0.422 1.48 4.26
defect k3, 0.600 0.599 0.596 0.619  0.551 1.07 2.30

liver k3, 0.900 0.900 0.900 0.900  0.906 0.872 0.86y

ki, 0.0020 | 0.0020 0.0020 0.0020 0.0021 0.0015 0.0018

normal ki, 0.700 0.701 0.701 0.700 0.700 0.678 0.719
myocardium  kl, 0.150 0.150 0.150 0.150 0.150 0.148 0.158

septal k2, 0.300 0.304  0.301 0301 0.296 0.162  0.347
quadratic defect k2, 0.300 0303 0301 0301 0.295 0.194  0.324
B-splines lateral k3, 0.500 0.503  0.498  0.507 0.422  1.57 4.64

defect k3, 0.600 0603 0597 0.607 0545 1.12 2.37

liver k3, 0.900 0900 0900 0900 0.903 0.872  0.86b

ki, 0.0020 | 0.0020 0.0020 0.0020 0.0020 0.0016  0.0017

normal ki, 0.700 0.704 0.700 0.702 0.697 0.681 0.719
myocardium k1, 0.150 0.150 0.150 0.150  0.150 0.148 0.159
septal k2, 0.300 0.296 0.291  0.309 0.306 0.158 0.327

linear defect k2, 0.300 0.298 0.296 0.305  0.306 0.194 0.311
B-splines lateral k3, 0.500 0.547 0.495 0.474 0.466 1.64 2.71
defect k3, 0.600 0.609 0.574 0571 0575 1.18 1.57
liver k3, 0.900 0.904 0.900 0.902  0.895 0.882 0.855

ki, 0.0020 | 0.0020 0.0020 0.0020 0.00200.0018 0.0015

normal ki, 0.700 0.679 0.677 0.683 0.682 0.721 0.658
myocardium k1, 0.150 0.144 0.146 0.147 0.148 0.155 0.153

septal k2, 0.300 0.249  0.261  0.259  0.401  0.266  0.071
constant defect k2, 0.300 0.283 0.289 0.295 0.331 0.251 0.115
B-splines lateral k3, 0.500 0549  0.816  0.682  0.454 3.05 5.74

defect k3, 0.600 0.644  0.892  0.653 0.727  1.70 2.22

liver k3, 0.900 0.912 0.903 0.890  0.879 0.906 0.85D

ki, 0.0020 | 0.0028 0.0027 0.0019 0.0020 0.0034 0.0023

andB(r) is derived from the directly estimated blood pool timerameterst?; and the washout parametdrs, were particularly
activity curve (denoted by indem: = 6) as follows. Given small when using quadratic B-splines and initial time segment
the set of time integrals{zﬁ’:1 aonVjp;d = 1,..., ik = lengths of 2.5, 5, or 10 sec. For these three time samplings,
1,...,K}, of the directly estimated blood pool curve, RFIThe biases (calculated as the absolute value of the difference be-
models B(T) as a piecewise linear function which interpotv_veen the simulated and estimated values, normalized by the
lates zero at time = 0: the VaMer:f:l a6 0T, /At at time S|mulate0d value and expressed as a percentage) ranged between
tin—(At/2),forj=1,...,Jandk = 1,..., K; and the value 0.0-1.0% for the cone beam geometry (Table Ii) and 0.0-1.4%
ZN ™ /AL at timet . for thg parallel beam geometry (Table 1V). For cubic B-splines
n=1“6n "/ K o the biases were comparable, except for the case of the lateral

The amplitude, of the background tissue (denoted by m(}tiefect and an initial time segment length of 10 sec, which had

dexm = 5) is estimated by minimizing the unweighted sum o . . . )
; larger bias. For linear B-splines the biases were comparable for
squares function : .
the normal myocardium and the liver, and were larger for the
J K (N - 2 defects. Overall, the biases for the cubic and linear B-splines
X2 = Z 5 0TY, _/ gB(r)dr s . (15) ranged between 0.0-4.4% and 0.0-6.6%, respectively, for the
i tik—At cone beam geometry and initial time segment lengths of 2.5, 5,

or 10 sec. For the parallel beam geometry the biases ranged
Tables Il and IV show the kinetic parameter estimates obetween 0.0-5.4% and 0.0-9.4%, respectively.

tained from the spline models for time-activity curves estimated
directly from noiseless projections. The biases in the uptake paTo study the effects of noisy projections on kinetic parameter

j=1k=
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100 simulated blood pool & ] 100 } simulated normal myocardium & 4
noiseless quadratic spline fit noiseless quadratic spline fit
noisy quadratic spline fit noisy quadratic spline fit
80 i 30 noisy compartmental model ------
2> 60 g > 60
= =
E E
o 40 g o 40
2 =
s g
£ 20 . 2 20
0 ses 0
-20 g -20 F g
6 9 12 15 6 9 12 15
time (min) time (min)
(a) Blood pool. (b) Normal myocardium.
100 simulated septal defect + 100 } simulated lateral defect <
noiseless quadratic spline fit noiseless quadratic spline fit
noisy quadratic spline fit noisy quadratic spline fit
80 noisy compartmental model ------ i noisy compartmental model ------ i
> 60 E > i
= =
E E
o 40 g o g
= = i
k& i
2 20 : £ 20 :
i i
0 oFE
-20 k -20 F g
6 9 12 15 6 9 12 15
time (min) time (min)

Fig. 7. First of 100 noisy cone beam realizations: time-activity curves for (a) the blood pool, (b) the normal myocardium, (c) the septal defgtiiedatb(el

defect, estimated using quadratic B-splines and an initial time segment length of 10 sec (Figure 4b). Samples of the simulated curves (Figowen3sare sh
points. The solid and dotted curves were estimated from noiseless and noisy projections, respectively. The dashed curves in (b—d) are thelKiteete mod
the noisy curves. The fitted kinetic parameters are listed in column (c) of Table V.

estimates obtained from spline time-activity curves, 100 redhe blood pool and the three myocardial volumes of interest, for
izations of projections having Poisson noise were generated fioe first noisy realization of cone beam and parallel beam data,
both the cone beam and parallel beam geometries. The ammspectively. For both the cone beam and parallel beam geome-
tude of the simulated blood input function was adjusted so thats, the differences between the spline time-activity curves es-
about 10 million events were detected using the cone beam dohated directly from noiseless and noisy projections were rel-
limators. With this same blood input function, about 6.4 milliomtively small, for the blood pool and the normal myocardium.
events were detected using the parallel beam collimators. TR the septal and lateral defects, the differences between the
number of total detected events was selected so as to be lesgplime curves estimated directly from noiseless and noisy pro-
a slice by slice basis, than the total of 4.8 million events whighctions were relatively large. Noise in the spline curve coef-
were detected in the eleven 7.12 mm-thick slices analyzed ifi@ents generated extended excursions (dotted lines) above and
99mTc-teboroxime patient study [8]. Quadratic B-splines angklow the noiseless spline curves (solid lines). The curves asso-
an initial time segment length of 10 sec were used to model ttiated with the one-compartment kinetic model fits to the noisy
time-activity curves. A two-tailed test [30] was used to assesspline curves provided smoother approximations (dashed lines)
the biases in the sample means of the kinetic parameter efstithe noiseless spline curves. In all cases, the noiseless spline
mates. curves provided relatively good fits to the samples of the simu-
Figures 7 and 8 show the time-activity curves estimated flated curves.
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Fig. 8. Same curves as in Figure 7, for parallel beam projections. The fitted kinetic parameters are listed in column (c) of Table VI.

Summaries of the results for all 100 noisy realizations are prealues P < 0.03), although the difference was only 0.7% for
sented in Tables V and VI, for both the cone beam and parttie normal myocardium. The difference for the liver washout
lel beam geometries. For the cone beam geometry (Table Was 10%. The sample standard deviations (column (e)) ranged
the sample means (column (d)) of the uptake paraméfgrs between 0.9-40%. The sample means of the uptake and washout
and the washout parametéfs for the normal myocardium and parameters for the septal and lateral defects were significantly
the liver did not differ significantly from the simulated valueglifferent from the simulated value®(< 0.03). The differences
(P > 0.4). The sample standard deviations (column (e)) rangbdtween the sample means and the simulated values for the de-
between 0.5-20%. The sample means of the uptake and wasliects ranged between 11-39%. The sample standard deviations
parameters for the septal and lateral defects were significarrdypged between 40—-140%.
different from the simulated value® (< 0.05). The differences
between the sample means and the simulated values for the@eEffects of Spatial Segmentation Errors

fects ranged between 4.8-16%. The sample standard deviationgaying demonstrated that direct time-activity curve estimates

ranged between 22-42%. and subsequent kinetic parameter estimates are robust with re-
For the parallel beam geometry (Table V1), the sample measect to the temporal B-spline basis function order and the ini-

(column (d)) of the uptake parametérg for the normal my- tial time sampling, given noiseless data and faithful modeling of

ocardium and the liver did not differ significantly from the simthe spatial distribution of activity and physical effects, we study

ulated values® > 0.05). The sample means of the washoutow the effects of spatial segmentation errors.

parameters:y were significantly different from the simulated In practice, we expect to base the spatial segmentation on
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TABLE V
KINETIC PARAMETERS OBTAINED FROM TIMEACTIVITY CURVES ESTIMATED DIRECTLY FROM CONE BEAM PROJECTIONS USING QUADRATIB-SPLINES
AND AN INITIAL TIME SEGMENT LENGTH OF 10 SEC(FIGURE 4B): (A) SIMULATED VALUES; (B) VALUES FROM NOISELESS PROJECTIONSC) VALUES
FROM THE FIRST OFL00NOISY REALIZATIONS; (D) SAMPLE MEANS AND (E) SAMPLE STANDARD DEVIATIONS FOR THELOONOISY REALIZATIONS.
SAMPLE MEANS THAT WERE SIGNIFICANTLY DIFFERENT FROM THE SIMULATED VALUES(I.E., P < 0.05 FOR A TWO-TAILED ¢ TEST) ARE LABELED WITH

ASTERISKS
cone beam
noisy fits
simulated | noiseless first sample sample
fit mean std dev
(@) (b) (c) (d) (e)
ki, 0.700 0.700 0.697 0.700 0.0064
normal myocardium k1, 0.150 0.150 0.151 0.150 0.0016
& 0.150 0.150 0.149 0.150 0.011
k§1 0.300 0.300 0.299 0.314* 0.072
septal defect k2, 0.300 0.300 0.307 0.317* 0.066
2 0.100 0.102 0.139 0.095 0.12
kgl 0.500 0.502 0.628 0.578* 0.21
lateral defect kifQ 0.600 0.603 0.727 0.653* 0.16
3 0.100 0.096 0.246 0.064* 0.17
k§1 0.900 0.900 0.901 0.900 0.0046
liver k‘lg 0.0020 0.0020 0.0029 0.0020 0.0004
;‘ 0.200 0.201 0.197 0.201 0.0047
background g 0.200 0.200 0.199 0.200 0.0010
TABLE VI

SAME QUANTITIES AS IN TABLE V, FOR PARALLEL BEAM PROJECTIONS SAMPLE MEANS THAT WERE SIGNIFICANTLY DIFFERENT FROM THE SIMULATED

VALUES (I.E., P < 0.05 FOR A TWO-TAILED ¢t TEST) ARE LABELED WITH ASTERISKS.

parallel beam
noisy fits
simulated | noiseless first sample sample
fit mean std dev
(@ (b) (© (d) (e)
k%1 0.700 0.700 0.698 0.702 0.010
normal myocardium ki, 0.150 0.150 0.148 0.151*  0.0031
L 0.150 0.151 0.148 0.149 0.025
k§1 0.300 0.301 0.322 0.337* 0.16
septal defect k%Q 0.300 0.301 0.397 0.333* 0.12
2 0.100 0.100 -0.094 0.086 0.24
kgl 0.500 0.507 1.102 0.694* 0.68
lateral defect k?Q 0.600 0.607 0.954 0.692* 0.40
12 0.100 0.092 -0.276 0.059 0.33
k3, 0.900 0.900 0.894 0.901 0.0082
liver k‘112 0.0020 0.0020 0.0014 0.0022* 0.0008
4 0.200 0.201 0.198 0.201 0.0081
background g 0.200 0.200 0.198 0.200 0.0019

static functional images obtained by summing the late tirmyocardium due to defects. We then perform a preliminary in-

frames of the dynamic SPECT study, anatomical images akestigation into the errors resulting from inaccurate localization

tained from a transmission scan, and any other images of the pithe myocardial walls for a defect-free heart.

tient that may be available (possibly from other modalities such

as X-ray computed tomography). We have developed and &p1 Failure to Segment Myocardial Defects

plied automated segmentation methods [31, 8], which are beingysing quadratic B-splines and an initial time segment length

refined and validated as part of our ongoing research. Even with1g sec, time-activity curves were estimated from noiseless
a perfect segmentation of anatomy, nonuniform activity distiéimulated cone beam data generated using the MCAT phantom
butions within individual organs must still be modeled. We cokaving defects in the septal and lateral walls of the left ventric-

sider first the case where a perfect anatomical segmentatiof|i§ myocardium (Figure 2a). However, the myocardial defects

aVaiIabIe, but there is a nonuniform aCtiVity distribution in thWere not included in the spatial Segmentation used for estimat-
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(a) Time-activity curves for noiseless cone beam data, no modeling of myocar-
dial defects.
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(b) Summed residuals for noisy data, no modeling of myocardial defects. (c) Summed residuals for noisy data, faithful modeling of myocardial defects.
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(d) Summed noiseless projections, myocardium with defects. (e) Summed noiseless anterior projections, myocardium with defects.

Fig. 9. Effects of failure to segment myocardial defects. The underestimation of myocardial activity (a) results in spatial structure in thecsiduasdaor the
modeled projections (b), which is absent for faithfully modeled defects (c). The structure in the residuals is seen to correspond to the myoegrdium (d
(b—d), the summation is over all 120 angles for each of the 15 rotations, whereas in (e) the summation is over one angle per rotation. The incleassd noise
in the lower portions of (b, c) are due to the relatively high activity concentration in the liver.

ing the time-activity curves, and the activity distribution was agndk,, = 0.146 min~—!, respectively, compared to the unbiased
sumed instead to be uniform throughout the entire myocardiuestimatesi,; = 0.700 min—* andk;, = 0.150 min—! obtained

Because of this failure to segment the myocardial defects, ﬁgm the curves estimated using the faithful spatial segmentation

time-activity curve estimated for the myocardium was system able 11I).
ically low (Figure 9a) and had an RMS error of 4.9%, compared . . . o .

. . . . Despite these relatively small errors in quantitation, spatial
to the error of 0.091% achieved using the faithful spatial segn P y 4 b

; X ructure was evident in the residuals for the modeled pro-
mentation (Figure 5b). The RMS error for the blood pool curve . . . Lo L
increased from 0.48% to 1.8%. jSCtIOHS, even for simulated noisy projection data containing

10 million detected events (Figure 9b). Thus, it may be pos-
Using these time-activity curves, the estimates of the myocaible in practice to detect spatial model mismatch resulting from
dial uptake and washout parameters weye = 0.670 min—! the failure to segment small myocardial defects, as well as to re-
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(a) Summed residuals for noisy data, dilated endocardium. (b) Summed residuals for noisy data, eroded endocardium.
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(c) Summed residuals for noisy data, dilated epicardium. (d) Summed residuals for noisy data, eroded epicardium.

Fig. 10. Effects of inaccurate localization of the myocardial walls. In (a—d), the summation of the residuals for the modeled projections i206\argé< for
each of the 15 rotations. The increased noise levels in the lower portions of (a—d) are due to the relatively high activity concentration in the liver.

fine the segmentation iteratively in an effort to reduce the spatiation can be performed in practice. As was the case with the

structure in the residuals for the modeled projections. failure to segment small myocardial defects, it may be possible
in practice to detect spatial model mismatch resulting from gross
C.2 Inaccurate Localization of the Myocardial Walls myocardial segmentation errors, as well as to refine the segmen-

) ) ) o tation iteratively in an effort to reduce the spatial structure in the
Using quadratic B-splines and an initial ime segment lengiBisiquals for the modeled projections.
of 10 sec, time-activity curves were estimated from noiseless

simulated cone beam data generated using the MCAT phantom
with a defect-free myocardium. Spatial model mismatches were
induced by either dilating or eroding the endocardial wall, or The combination of gantry motion and the time-variation of
dilating or eroding the epicardial wall. The wall location waghe radiopharmaceutical distribution being imaged results in in-
displaced by about 2.5 mm in each case by applying 3-D greynsistent dynamic SPECT projection data sets. In addition, the
scale dilation or erosion operators [32] as appropriate to voxgle of cone beam collimators can result in insufficient, as well as
maps of the indicator functions for the blood pool, myocardiununcated, projection samples. Conventional kinetic model pa-
and background tissue, prior to forward projecting the volumesmeter estimation from time-activity curves generated by over-
to calculate the spatial basis projection factefs laying volumes of interest on images reconstructed from these
The RMS errors for the time-activity curves estimategrojection data results in biases. The biases in the time-activity
using these incorrect spatial segmentations ranged betwearve estimates and the subsequent kinetic model parameter
15-23% for the myocardium and 2.8-30% for the blood podstimates can be reduced significantly by estimating the time-
The kinetic model parameters obtained from these cunagtivity curves directly from the projections. Implementation
ranged between 0.537-0.961 minfor the uptakek,, and of this strategy requires a spatial and temporal model of the ra-
0.051-0.288 min* for the washout:,,, compared to the unbi- diopharmaceutical distribution throughout the projected field of
ased estimates,;, = 0.700 min~! andk,, = 0.150 min—! ob- view.
tained from curves estimated using the faithful spatial segmen-Computational issues associated with fully 4-D direct esti-
tation. In each case, spatial structure was evident in the residualgion of spatiotemporal distributions from dynamic SPECT
for the modeled projections for simulated noisy projection daprojection data have been addressed, so that least squares es-
containing 10 million detected events (Figure 10). timates of time-activity curves can be obtained quickly and ac-
Thus, it appears that systematic errors in the gross segmentaately using a workstation with a modest amount of memory.
tion of anatomy may have a larger effect on quantitation, th@emporal B-splines were used to model the time-activity curves
does the failure to account for small nonuniformities in the aéar the blood pool and tissue volumes in simulated cone beam
tivity distributions within the individual organs. Further studyand parallel beam cardiac data acquisitions. For noiseless data,
is needed to assess the accuracy with which the spatial segntieere were only minor differences between the curve models es-

IV. DISCUSSION
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timated from the cone beam and the parallel beam data, as wadites of time-activity curves or kinetic parameters for two vol-
as minor differences between subsequent kinetic model parammes of interest, as well as estimates of the uncertainties and
eter estimates. The direct time-activity curve estimates and sabfrelations of the quantities and a measure of the goodness of
sequent kinetic parameter estimates were robust with respedittof the overall spatiotemporal model, one is at least in a po-
the temporal B-spline basis function order and the initial timg&tion to make an objective comparison that can supplement a
sampling, given noiseless data and faithful modeling of the spsbjective evaluation of the data.
tial distribution of activity and physical effects. For both the The estimation of time-activity curves directly from projec-
cone beam and parallel beam geometries, RMS modeling ernjws data appears to be potentially useful for clinical SPECT
for the time-activity curves were less than 7% when using e&itudies involving slowly rotating gantries, particularly those
ther cubic, quadratic, or linear splines with initial time segmenmghich use a single-detector system or body contouring orbits
lengths of either 2.5, 5, or 10 sec. Errors in uptake and washetith a multi-detector system. The computationally efficient
parameters for one-compartment kinetic models obtained fronethodology presented in Section Il facilitates continued re-
these spline curves were less than 10%. search in this area. The algorithm developed in Section Il can
For small (3 cm diameter) myocardial defect regions exhibi@lso be used to solve quickly the linear least squares subprob-
ing reduced uptake and accelerated washout, biased estimatésmfembedded in the nonlinear estimation problem which we
kinetic parameters for one-compartment models were obtairfednulated in [5-7], thereby facilitating future research into es-
for noisy data using quadratic B-splines and an initial time sarimating kinetic parameters directly from projection data. This
pling of 10 sec. The uptake and washout parameter estimatedudes the joint estimation of a temporal model for the blood
obtained from noisy cone beam data had less bias (4.8—168ut function and kinetic parameters for compartmental models
and variance (22—42%) than those obtained from noisy paraliigiectly from projection data, as well as the parameterization of
beam data (bias of 11-39%, variance of 40—-140%). This wgatially nonuniform activity concentrations within segmented
presumably due to the increased sensitivity of the cone besolumes encompassing the projected field of view.
collimators and their increased resolution at the center of tomo-
graph, near which the defects were imaged. V. ACKNOWLEDGMENTS
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